Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations

نویسندگان

  • Min Tao
  • Xiaoming Yuan
چکیده

Many applications arising in a variety of fields can be well illustrated by the task of recovering the low-rank and sparse components of a given matrix. Recently, it is discovered that this NP-hard task can be well accomplished, both theoretically and numerically, via heuristically solving a convex relaxation problem where the widely-acknowledged nuclear norm and l1 norm are utilized to induce low-rank and sparsity. In the literature, it is conventionally assumed that all entries of the matrix to be recovered are exactly known (via observation). To capture even more applications, this paper studies the recovery task in more general settings: only a fraction of entries of the matrix can be observed and the observation is corrupted by both impulsive and Gaussian noise. The resulted model falls into the applicable scope of the classical augmented Lagrangian method. Moreover, the separable structure of the new model enables us to solve the involved subproblems more efficiently by splitting the augmented Lagrangian function. Hence, some implementable numerical algorithms are developed in the spirits of the well-known alternating direction method and the parallel splitting augmented Lagrangian method. Some preliminary numerical experiments verify that these augmented-Lagrangian-based algorithms are easily-implementable and surprisingly-efficient for tackling the new recovery model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Square Deal: Lower Bounds and Improved Convex Relaxations for Tensor Recovery

Recovering a low-rank tensor from incomplete information is a recurring problem in signal processing andmachine learning. The most popular convex relaxation of this problem minimizes the sum of the nuclear norms (SNN) of the unfolding matrices of the tensor. We show that this approach can be substantially suboptimal: reliably recovering a Kway n⇥n⇥· · ·⇥n tensor of Tucker rank (r, r, . . . , r)...

متن کامل

Structured Low-Rank Matrix Factorization with Missing and Grossly Corrupted Observations

Recovering low-rank and sparse matrices from incomplete or corrupted observations is an important problem in machine learning, statistics, bioinformatics, computer vision, as well as signal and image processing. In theory, this problem can be solved by the natural convex joint/mixed relaxations (i.e., l1-norm and trace norm) under certain conditions. However, all current provable algorithms suf...

متن کامل

Improved Iteratively Reweighted Least Squares for Unconstrained

In this paper, we first study q minimization and its associated iterative reweighted algorithm for recovering sparse vectors. Unlike most existing work, we focus on unconstrained q minimization, for which we show a few advantages on noisy measurements and/or approximately sparse vectors. Inspired by the results in [Daubechies et al., Comm. Pure Appl. Math., 63 (2010), pp. 1–38] for constrained ...

متن کامل

Greedy Bilateral Sketch, Completion & Smoothing

Recovering a large low-rank matrix from highly corrupted, incomplete or sparse outlier overwhelmed observations is the crux of various intriguing statistical problems. We explore the power of “greedy bilateral (GreB)” paradigm in reducing both time and sample complexities for solving these problems. GreB models a lowrank variable as a bilateral factorization, and updates the left and right fact...

متن کامل

Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery

Recovering a low-rank tensor from incomplete information is a recurring problem in signal processing and machine learning. The most popular convex relaxation of this problem minimizes the sum of the nuclear norms of the unfoldings of the tensor. We show that this approach can be substantially suboptimal: reliably recovering a K-way tensor of length n and Tucker rank r from Gaussian measurements...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011